Eisenstein series on reductive symmetric spaces and representations of Hecke algebras.
For a Fedosov manifold (symplectic manifold equipped with a symplectic torsion-free affine connection) admitting a metaplectic structure, we shall investigate two sequences of first order differential operators acting on sections of certain infinite rank vector bundles defined over this manifold. The differential operators are symplectic analogues of the twistor operators known from Riemannian or Lorentzian spin geometry. It is known that the mentioned sequences form complexes if the symplectic...
La stabilisation de la formule des traces utilise non seulement le “lemme fondamental”, mais aussi plusieurs variantes dont l’une est le “lemme fondamental pondéré”. Nous montrons que, si celui-ci est vrai sur un corps de base de caractéristique positive, il l’est aussi sur un corps de base de caractéristique nulle. Pour cela, nous introduisons un certain espace de fonctions contenant les fonctions caractéristiques des réseaux de Moy-Prasad. Nous montrons que les intégrales orbitales pondérées des...
Nous donnons dans cet article une désintégration en irréductibles explicite des restrictions aux sous-groupes connexes fermés des représentations unitaires et irréductibles pour les groupes de Lie nilpotents simplement connexes. Ainsi, nous décrivons un opérateur d'entrelacement qui ne tient pas compte des multiplicités intervenant dans la désintégration.
Inspiré par un travail de J.-P. Bézivin et F. Gramain sur les systèmes d’équations aux différences, on caractérise les sous-groupes d’un groupe de Lie réel (resp. complexe) , pour lesquels toute fonction continue (resp. entière) telle que l’ensemble des -translatées engendrent un -espace vectoriel de dimension finie, engendrent aussi un -espace vectoriel de dimension finie par - translation. On fait le lien avec les systèmes d’équations aux différences à coefficients constants.
Soient un groupe de Lie réductif d’algèbre de Lie , un opérateur différentiel non nul à coefficients constants et -invariant sur , et une distribution -invariante sur . Nous montrons que l’équation différentielle a des solutions dans l’espace des distributions -invariantes sur ; de plus, si est tempérée ou d’ordre fini, on peut trouver des solutions ayant les mêmes propriétés. Si est un opérateur différentiel bi-invariant non nul sur , Benabdallah et Rouvière ont donné une condition...
Let be a (generalized) flag manifold of a complex semisimple Lie group . We investigate the problem of constructing a graded star product on which corresponds to a -equivariant quantization of symbols into twisted differential operators acting on half-forms on . We construct, when is generated by the momentum functions for , a preferred choice of where has the form . Here are operators on . In the known examples, () is not a differential operator, and so the star product ...
Nous corrigeons deux erreurs de [Rodier 1988] : l’une dans l’étude d’une involution sur les représentations irréductibles non ramifiées d’un groupe semi-simple, l’autre dans la description de représentations du groupe .