Sur la cohomologie réelle des groupes de Lie simples réels
On considère un groupe de Lie résoluble, connexe, unimodulaire d’algèbre de Lie . Soit dans le dual de l’espace vectoriel . Sous l’hypothèse que est réductive dans on construit une application de dans l’espace des fonctions sur une partie ouverte et dense de . En utilisant cette application on donne une formule pour la trace de l’opérateur , où est la représentation unitaire du groupe associée à . Cette formule s’applique aux représentations de carré intégrable modulo du...
Nous étudions ici les feuilletages de codimension un induits par les actions non dégénérées de groupes nilpotents.L’existence de feuilles non compactes isolées d’un côté, implique celle d’idéaux remarquables dans l’algèbre de Lie du groupe.Dans la deuxième partie, nous montrons, dans le cas des groupes de Heisenberg des théorèmes de fibration et de cobordisme généralisant ceux obtenus par H. Rosenberg et l’auteur pour (cf. Cahiers IHES, 1974).