Displaying 1701 – 1720 of 2342

Showing per page

Schwartz kernels on the Heisenberg group

Alessandro Veneruso (2003)

Bollettino dell'Unione Matematica Italiana

Let H n be the Heisenberg group of dimension 2 n + 1 . Let L 1 , , L n be the partial sub-Laplacians on H n and T the central element of the Lie algebra of H n . We prove that the kernel of the operator m L 1 , , L n , - i T is in the Schwartz space S H n if m S R n + 1 . We prove also that the kernel of the operator h L 1 , , L n is in S H n if h S R n and that the kernel of the operator g L , - i T is in S H n if g S R 2 . Here L = L 1 + + L n is the Kohn-Laplacian on H n .

Seeable matter; unseeable antimatter

Geoffrey Dixon (2014)

Commentationes Mathematicae Universitatis Carolinae

The universe we see gives every sign of being composed of matter. This is considered a major unsolved problem in theoretical physics. Using the mathematical modeling based on the algebra 𝐓 : = 𝐂 𝐇 𝐎 , an interpretation is developed that suggests that this seeable universe is not the whole universe; there is an unseeable part of the universe composed of antimatter galaxies and stuff, and an extra 6 dimensions of space (also unseeable) linking the matter side to the antimatter—at the very least.

Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups

K. H. Neeb (2014)

Annales de l’institut Fourier

A unitary representation π of a, possibly infinite dimensional, Lie group G is called semibounded if the corresponding operators i d π ( x ) from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra 𝔤 of G . We classify all irreducible semibounded representations of the groups ^ φ ( K ) which are double extensions of the twisted loop group φ ( K ) , where K is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and φ is...

Semi-groupe de Lie associé à un cône symétrique

Khalid Koufany (1995)

Annales de l'institut Fourier

Soit V une algèbre de Jordan simple euclidienne de dimension finie et Ω le cône symétrique associé. Nous étudions dans cet article le semi-groupe Γ , naturellement associé à V , formé des automorphismes holomorphes du domaine tube T Ω : = V + i Ω qui appliquent le cône Ω dans lui-même.

Semiholonomic jets and induced modules in Cartan geometry calculus

Jan Slovák, Vladimír Souček (2024)

Archivum Mathematicum

The famous Erlangen Programme was coined by Felix Klein in 1872 as an algebraic approach allowing to incorporate fixed symmetry groups as the core ingredient for geometric analysis, seeing the chosen symmetries as intrinsic invariance of all objects and tools. This idea was broadened essentially by Elie Cartan in the beginning of the last century, and we may consider (curved) geometries as modelled over certain (flat) Klein’s models. The aim of this short survey is to explain carefully the basic...

Separately radial and radial Toeplitz operators on the projective space and representation theory

Raul Quiroga-Barranco, Armando Sanchez-Nungaray (2017)

Czechoslovak Mathematical Journal

We consider separately radial (with corresponding group 𝕋 n ) and radial (with corresponding group U ( n ) ) symbols on the projective space n ( ) , as well as the associated Toeplitz operators on the weighted Bergman spaces. It is known that the C * -algebras generated by each family of such Toeplitz operators are commutative (see R. Quiroga-Barranco and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such commutativity. Our method is easier and more enlightening as it shows that the...

Currently displaying 1701 – 1720 of 2342