Displaying 1781 – 1800 of 2342

Showing per page

Spectral multipliers on metabelian groups.

Waldemar Hebisch (2000)

Revista Matemática Iberoamericana

Let G be a Lie group, Xj right invariant vector fields on G, which generate (as a Lie algebra) the Lie algebra of G,L = -Σ Xj2.(...) In this paper we consider L1(G) boundedness of F(L) for (some) metabelian G and a distinguished L on G. Of the main interest is that the group is of exponential growth, and possibly higher rank. Previously positive results about higher rank groups were only about Iwasawa type groups. Also, our groups may be unimodular, so it is the second positive result (after [13])...

Spectral synthesis in L²(G)

Jean Ludwig, Carine Molitor-Braun, Sanjoy Pusti (2015)

Colloquium Mathematicae

For locally compact, second countable, type I groups G, we characterize all closed (two-sided) translation invariant subspaces of L²(G). We establish a similar result for K-biinvariant L²-functions (K a fixed maximal compact subgroup) in the context of semisimple Lie groups.

Spectrum generating on twistor bundle

Thomas Branson, Doojin Hong (2006)

Archivum Mathematicum

Spectrum generating technique introduced by Ólafsson, Ørsted, and one of the authors in the paper (Branson, T., Ólafsson, G. and Ørsted, B., Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups, J. Funct. Anal. 135 (1996), 163–205.) provides an efficient way to construct certain intertwinors when K -types are of multiplicity at most one. Intertwinors on the twistor bundle over S 1 × S n - 1 have some K -types of multiplicity 2. With some additional...

Spherical gradient manifolds

Christian Miebach, Henrik Stötzel (2010)

Annales de l’institut Fourier

We study the action of a real-reductive group G = K exp ( 𝔭 ) on a real-analytic submanifold X of a Kähler manifold. We suppose that the action of G extends holomorphically to an action of the complexified group G on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map μ 𝔭 : X 𝔭 . We show that μ 𝔭 almost separates the K –orbits if and only if a minimal parabolic subgroup of G has an open orbit. This generalizes Brion’s characterization of spherical...

Spherical harmonics on Grassmannians

Roger Howe, Soo Teck Lee (2010)

Colloquium Mathematicae

We propose a generalization of the theory of spherical harmonics to the context of symmetric subgroups of reductive groups acting on flag manifolds. We give some sample results for the case of the orthogonal group acting on Grassmann manifolds, especially the case of 2-planes.

Spherical unitary dual of general linear group over non-Archimidean local field

Marko Tadic (1986)

Annales de l'institut Fourier

Let F be a local non-archimedean field. The set of all equivalence classes of irreducible spherical representations of G L ( n , F ) is described in the first part of the paper. In particular, it is shown that each irreducible spherical representation is parabolically induced by an unramified character. Bernstein’s result on the irreducibility of the parabolically induced representations of G L ( n , F ) by irreducible unitary ones, and Ol’shanskij’s construction of complementary series give directly a description of all...

Spin representations and binary numbers

Henrik Winther (2024)

Archivum Mathematicum

We consider a construction of the fundamental spin representations of the simple Lie algebras 𝔰𝔬 ( n ) in terms of binary arithmetic of fixed width integers. This gives the spin matrices as a Lie subalgebra of a -graded associative algebra (rather than the usual -filtered Clifford algebra). Our description gives a quick way to write down the spin matrices, and gives a way to encode some extra structure, such as the real structure which is invariant under the compact real form, for some n . Additionally...

Currently displaying 1781 – 1800 of 2342