Singular Bott-Chern classes and the arithmetic Grothendieck Riemann Roch theorem for closed immersions.
For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals , are on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are . We study such maps and build a family of examples where also fibre-integrals for , the Grothendieck sheaf, are .
We prove the boundedness of the oscillatory singular integrals for arbitrary real-valued functions and for rather general domains whose dependence upon x satisfies no regularity assumptions.
We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular points.
We define open book structures with singular bindings. Starting with an extension of Milnor’s results on local fibrations for germs with nonisolated singularity, we find classes of genuine real analytic mappings which yield such open book structures.
In this article we investigate the natural domain of definition of a holonomy map associated to a singular holomorphic foliation of the complex projective plane. We prove that germs of holonomy between algebraic curves can have large sets of singularities for the analytic continuation. In the Riccati context we provide examples with natural boundary and maximal sets of singularities. In the generic case we provide examples having at least a Cantor set of singularities and even a nonempty open set...
We complete the characterization of singular sets of separately analytic functions. In the case of functions of two variables this was earlier done by J. Saint Raymond and J. Siciak.
Soit un polynôme. On appelle série de Dirichlet associée à la fonction : . Dans cet article nous étudions l’existence et les propriétés du prolongement méromorphe d’une telle série sous l’hypothèse qu’il existe tel que : i) quand et et ii) où . Cette hypothèse est probablement optimale et en tout cas contient strictement toutes les classes de polynômes déjà traitées antérieurement. Sous cette hypothèse nos principaux résultats sont : l’existence du prolongement méromorphe au plan...
On étudie les singularités et l’intégrabilité d’une classe de fonctions plurisousharmoniques sur une variété analytique de dimension . Pour étudier ce problème, nous commençons par contrôler les nombres de Lelong de certains types de fonctions plurisousharmoniques . Ensuite, nous étudions les singularités du transformé strict du courant par un éclatement de au dessus d’un point. Nous répondons ainsi positivement au problème d’intégrabilité locale de , lorsque , et lorsque est une fonction plurisousharmonique...
Soit un germe de fonction analytique , à singularité isolée en . Nous nous proposons d’étudier le développement asymptotique des intégrales de formes , de degré , sur les fibres de . Nous montrons que ces développements asymptotiques peuvent être décrits à partir de l’action de la monodromie sur le groupe de la fibre de Milnor complexe.
Soit un corps de caractéristique nulle et une fonction non constante définie sur une variété lisse. Nous définissons dans cet article unefibre de Milnor motivique à l’infiniqui appartient à un anneau de Grothendieck des variétés. Elle est définie en termes d’une compactification choisie, non nécessairement lisse, mais est indépendante de ce choix. Lorsque est le corps des nombres complexes, en utilisant le morphisme de réalisation de Hodge, elle se réalise en le spectre à l’infini de . Nous...