Displaying 101 – 120 of 259

Showing per page

L ² h -domains of holomorphy and the Bergman kernel

Peter Pflug, Włodzimierz Zwonek (2002)

Studia Mathematica

We give a characterization of L ² h -domains of holomorphy with the help of the boundary behavior of the Bergman kernel and geometric properties of the boundary, respectively.

Le lemme fondamental de Nilsson dans le cas analytique local

Le Van Thanh (1982)

Annales de l'institut Fourier

On donne des évaluations précises de la croissance modérée des intégrales de fonctions de classe de Nilsson locale dans C 2 , exprimées par des caractéristiques topologiques des courbes de ramification des intégrands.

Le problème de l'inversion d'un théorème de Bremerman et ses applications à la transformation biholomorphe

Ivan-Pierre Ramadanov (1975)

Annales de l'institut Fourier

Étude de la possibilité d’inverser le théorème de Bremerman : si B et D sont deux domaines bornés dans C n et C m et si G = B × D , alors K G = K B K D K désigne la fonction-noyau de Bergman. On introduit une classe de domaines dans C n + m qui contient les domaines de Reinhardt et de Hartogs et différentes fonctions “correctives” qui expriment la différence entre la fonction-noyau du domaine et le produit des fonctions-noyaux de sa “base” dans C n et de ses “fibres” dans C m . Divers moyens d’inverser le théorème de Bremerman...

Les noyaux de Bergman et Szegö pour des domaines strictment pseudo-convexes qui généralisent la boule.

Jean-Jacques Loeb (1992)

Publicacions Matemàtiques

Let G be a complex semi-simple group with a compact maximal group K and an irreducible holomorphic representation ρ on a finite dimensional space V. There exists on V a K-invariant Hermitian scalar product. Let Ω be the intersection of the unit ball of V with the G-orbit of a dominant vector. Ω is a generalization of the unit ball (case obtained for G = SL(n,C) and ρ the natural representation on Cn).We prove that for such manifolds, the Bergman and Szegö kernels as for the ball are rational fractions...

Lie group structures and reproducing kernels on the unit ball of n

Umberto Sampieri (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si introducono due strutture di gruppo di Lie su un dominio di Siegel omogeneo di n . Per la palla unitaria si definisce una famiglia ad un parametro di strutture intermedie; ad ognuna di esse viene associato naturalmente un nucleo riproducente ottenendo un'interpolazione tra il nucleo di Bergman ed il nucleo di Szego.

Multidimensional residues and ideal membership.

Alessandro Perotti (1998)

Publicacions Matemàtiques

Let I(f) be a zero-dimensional ideal in C[z1, ..., zn] defined by a mapping f. We compute the logarithmic residue of a polynomial g with respect to f. We adapt an idea introduced by Aizenberg to reduce the computation to a special case by means of a limiting process.We then consider the total sum of local residues of g w.r.t. f. If the zeroes of f are simple, this sum can be computed from a finite number of logarithmic residues. In the general case, you have to perturb the mapping f. Some applications...

Non-holomorphic functional calculus for commuting operators with real spectrum

Mats Andersson, Bo Berndtsson (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider n -tuples of commuting operators a = a 1 , ... , a n on a Banach space with real spectra. The holomorphic functional calculus for a is extended to algebras of ultra-differentiable functions on n , depending on the growth of exp ( i a · t ) , t n , when | t | . In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.

Currently displaying 101 – 120 of 259