Displaying 341 – 360 of 1394

Showing per page

Ensembles de zéros à la frontière de fonctions analytiques dans des domaines strictement pseudo-convexes

Anne-Marie Chollet (1976)

Annales de l'institut Fourier

Soit D , un domaine borné, strictement pseudo-convexe de C n , on note A ( D ) , la classe des fonctions analytiques dans D , continues ainsi que toutes leurs dérivées dans D . Le principal résultat de ce travail est une condition suffisante pour qu’un sous-ensemble fermé de la frontière de D soit l’ensemble des zéros d’une fonction F de A ( D ) et aussi l’ensemble des zéros communs à F et à toutes ses dérivées.

Ensembles pics pour A ( D )

Jacques Chaumat, Anne-Marie Chollet (1979)

Annales de l'institut Fourier

Soit D un domaine borné strictement pseudoconvexe dans C n à frontière régulière D . On montre que tout compact d’une sous-variété N de D dont l’espace tangent T p ( N ) en chaque point p de N est contenu dans le sous-espace complexe maximal de T p ( D ) est un ensemble pic pour A ( D ) , la classe des fonctions analytiques dans D dont toutes les dérivées sont continues dans D .

Equivalent characterizations of Bloch functions

Zhangjian Hu (1994)

Colloquium Mathematicae

In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].

Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids

Romaric Tytgat (2015)

Czechoslovak Mathematical Journal

Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes f ¯ tels que l’opérateur de Hankel H f ¯ sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten 𝒮 p quand p tend vers 1 et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. Abstract....

Essential norm of the difference of composition operators on Bloch space

Ke-Ben Yang, Ze-Hua Zhou (2010)

Czechoslovak Mathematical Journal

Let ϕ and ψ be holomorphic self-maps of the unit disk, and denote by C ϕ , C ψ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators C ϕ - C ψ from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.

Currently displaying 341 – 360 of 1394