Displaying 81 – 100 of 1394

Showing per page

Accelero-summation of the formal solutions of nonlinear difference equations

Geertrui Klara Immink (2011)

Annales de l’institut Fourier

In 1996, Braaksma and Faber established the multi-summability, on suitable multi-intervals, of formal power series solutions of locally analytic, nonlinear difference equations, in the absence of “level 1 + ”. Combining their approach, which is based on the study of corresponding convolution equations, with recent results on the existence of flat (quasi-function) solutions in a particular type of domains, we prove that, under very general conditions, the formal solution is accelero-summable. Its sum...

Algorithme de calcul du polynôme de Bernstein : Cas non dégénéré

Joël Briançon, Michel Granger, Philippe Maisonobe, M. Miniconi (1989)

Annales de l'institut Fourier

Nous commençons par indiquer comment la connaissance du degré d’un opérateur différentiel, unitaire en s et annulant f s , permet de donner un algorithme de calcul du polynôme de Bernstein d’un germe f de fonction analytique à singularité isolée.Nous étudions alors le cas d’une singularité non dégénérée par rapport à son polygôme de Newton; nous donnons un algorithme pour calculer le polynôme de Bernstein de ces singularités et l’équation fonctionnelle associée. Notre méthode utilise une filtration...

Amibes de variétés algébriques et dénombrement de courbes

Ilia Itenberg (2002/2003)

Séminaire Bourbaki

Les amibesdes variétés algébriques dans ( * ) n sont les images de ces variétés par l’application des moments Log : ( * ) n n , Log : ( z 1 , ... , z n ) ( log | z 1 | , ... , log | z n | ) . Des résultats obtenus par G. Mikhalkin montrent l’utilité des amibes pour l’étude des variétés algébriques réelles et complexes. Les amibes peuvent être déformées en des complexes polyédraux appelésvariétés algébriques tropicales. Cette déformation permet, en particulier, de calculer les invariants de Gromov-Witten du plan projectif et d’autres surfaces toriques en dénombrant des courbes...

An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function

Mitja Nedic (2023)

Czechoslovak Mathematical Journal

We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.

An elementary proof of the Briançon-Skoda theorem

Jacob Sznajdman (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function φ belongs to an ideal I of the ring of germs of analytic functions at 0 n ; more precisely, the ideal membership is obtained if a function associated with φ and I is locally square integrable. If I can be generated by m elements,it follows in particular that I min ( m , n ) ¯ I , where J ¯ denotes the integral closure of an ideal J .

Currently displaying 81 – 100 of 1394