Holomorphe Korrespondenzen und meromorphe Abbildungen allgemeiner komplexer Räume.
The key result (Theorem 1) provides the existence of a holomorphic approximation map for some space of C∞-functions on an open subset of Rn. This leads to results about the existence of a continuous linear extension map from the space of the Whitney jets on a closed subset F of Rn into a space of holomorphic functions on an open subset D of Cn such that D ∩ Rn = RnF.
We study coherent subsheaves 𝓓 of the holomorphic tangent sheaf of a complex manifold. A description of the corresponding 𝓓-stable ideals and their closed complex subspaces is sketched. Our study of non-holonomicity is based on the Noetherian property of coherent analytic sheaves. This is inspired by the paper [3] which is related with some problems of mechanics.
Un sous-ensemble pfaffien d’un ouvert semi-analytique est une intersection finie d’ensembles semi-analytiques relativement compacts de et de feuilles non spiralantes de certains feuilletages analytiques de codimension 1 de Les sous-ensembles semi-pfaffiens de sont les éléments de la plus petite classe de sous-ensembles de contenant les sous-ensembles pfaffiens de , stable par intersection finie, réunion finie et différence symétrique. Les ensembles -pfaffiens sont les éléments de la...
Soit un germe en de 1-forme différentielle holomorphe, satisfaisant la condition d’intégrabilité et non dicritique, i.e. sur toute surface non intégrale de , on ne peut tracer, au voisinage de 0, qu’un nombre fini de germes de courbes analytiques , intégrales de , avec . Alors possède un germe d’hypersurface analytique intégrale.