Displaying 461 – 480 of 747

Showing per page

On the embedding of 1-convex manifolds with 1-dimensional exceptional set

Lucia Alessandrini, Giovanni Bassanelli (2001)

Annales de l’institut Fourier

In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold X , with 1- dimensional exceptional set S and finitely generated second homology group H 2 ( X , ) , is embeddable in m × n if and only if X is Kähler, and this case occurs only when S does not contain any effective curve which is a boundary.

On the group of real analytic diffeomorphisms

Takashi Tsuboi (2009)

Annales scientifiques de l'École Normale Supérieure

The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the n -dimensional torus, its identity component is a simple group. For U ( 1 ) fibered manifolds, for manifolds admitting special semi-free U ( 1 ) actions and for 2- or 3-dimensional manifolds with nontrivial U ( 1 ) actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.

On the intersection product of analytic cycles

Sławomir Rams (2000)

Annales Polonici Mathematici

We prove that the generalized index of intersection of an analytic set with a closed submanifold (Thm. 4.3) and the intersection product of analytic cycles (Thm. 5.4), which are defined in [T₂], are intrinsic. We define the intersection product of analytic cycles on a reduced analytic space (Def. 5.8) and prove a relation of its degree and the exponent of proper separation (Thm. 6.3).

On the Łojasiewicz exponent of the gradient of a holomorphic function

Andrzej Lenarcik (1998)

Banach Center Publications

The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality | g r a d h ( x , y ) | c | ( x , y ) | λ holds near 0 C 2 for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.

Currently displaying 461 – 480 of 747