Torsion and closed geodesics on complex hyperbolic manfolds.
Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e. is nef) is good,i.e.its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of is generated by global sections); unless is simple. “Simple“ means that there is no compact subvariety through the very general point of and not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical...
We prove that every Kähler solvmanifold has a finite covering whose holomorphic reduction is a principal bundle. An example is given that illustrates the necessity, in general, of passing to a proper covering. We also answer a stronger version of a question posed by Akhiezer for homogeneous spaces of nonsolvable algebraic groups in the case where the isotropy has the property that its intersection with the radical is Zariski dense in the radical.
Cet article est consacré à la démonstration d’une version presque complexe du théorème de Bloch. Considérons la réunion C de quatre J-droites en position générale dans un plan projectif presque complexe. Nous démontrons que toute suite non normale de J-disques évitant évitant la configuration C admet une sous-suite convergeant, au sens de Hausdorff, vers une partie la réunion des diagonales de C. En particulier, le complémentaire de la configuration C est hyperboliquement plongé dans le paln projectif...
On montre l'hyperbolicité du complémentaire de cinq droites en position générale dans un plan projectif presque complexe, répondant ainsi à une question de S. Ivashkovich.
In this Note, I prove that, in many cases, the injective Kobayashi pseudodistance, as defined by Hahn, is equal to the Kobayashi pseudodistance.
We show the variation formula for the Schiffer span s(t) for moving Riemann surfaces R(t) with , and apply it to show the simultaneous uniformization of moving planar Riemann surfaces of class .
We study the analytic structure of the leaves of a holomorphic foliation by curves on a compact complex manifold. We show that if every leaf is a hyperbolic surface then they can be simultaneously uniformized in a continuous manner. In case the manifold is complex projective space a sufficient condition is that there are no algebraic leaf.
The study of -holomorphic maps leads to the consideration of the inequations , and . The first inequation is fairly easy to use. The second one, that is relevant to the case of rough structures, is more delicate. The case of vector valued is strikingly different from the scalar valued case. Unique continuation and isolated zeroes are the main topics under study. One of the results is that, in almost complex structures of Hölder class , any -holomorphic curve that is constant on a non-empty...
The purpose of this paper is to describe a method to construct a Kähler metric with cone singularity along a divisor and to illustrate a type of maximum principle for these incomplete metrics by showing that Kähler-Einstein metrics are unique in geometric Hölder spaces.
We define and study the notions of connections and structures of grassmannian type on complex manifolds.
Nous construisons de nouvelles variétés complexes compactes comme espaces d’orbites d’actions linéaires de , généralisant en cela les constructions de Meersseman. Nous donnons également certaines propriétés de ces variétés.