Sheaves on subanalytic sites
We obtain a complete list of simple framed curve singularities in ℂ² and ℂ³ up to the framed equivalence. We also find all the adjacencies between simple framed curves.
For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals , are on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are . We study such maps and build a family of examples where also fibre-integrals for , the Grothendieck sheaf, are .
We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular points.
We define open book structures with singular bindings. Starting with an extension of Milnor’s results on local fibrations for germs with nonisolated singularity, we find classes of genuine real analytic mappings which yield such open book structures.
In this article we investigate the natural domain of definition of a holonomy map associated to a singular holomorphic foliation of the complex projective plane. We prove that germs of holonomy between algebraic curves can have large sets of singularities for the analytic continuation. In the Riccati context we provide examples with natural boundary and maximal sets of singularities. In the generic case we provide examples having at least a Cantor set of singularities and even a nonempty open set...
Soit un germe de fonction analytique , à singularité isolée en . Nous nous proposons d’étudier le développement asymptotique des intégrales de formes , de degré , sur les fibres de . Nous montrons que ces développements asymptotiques peuvent être décrits à partir de l’action de la monodromie sur le groupe de la fibre de Milnor complexe.
Soit un corps de caractéristique nulle et une fonction non constante définie sur une variété lisse. Nous définissons dans cet article unefibre de Milnor motivique à l’infiniqui appartient à un anneau de Grothendieck des variétés. Elle est définie en termes d’une compactification choisie, non nécessairement lisse, mais est indépendante de ce choix. Lorsque est le corps des nombres complexes, en utilisant le morphisme de réalisation de Hodge, elle se réalise en le spectre à l’infini de . Nous...
Dans un article précédent [Singularité des flots holomorphes, Ann. Inst. Fourier, Grenoble, 46-2 (1996), 411-428], le deuxième auteur démontrait, en particulier, qu’un champ de vecteurs holomorphe complet sur une surface complexe ne peut posséder une singularité isolée dont le deuxième jet est nul. Nous nous proposons ici de donner une description précise des champs de vecteurs holomorphes complets sur les surfaces complexes qui possèdent une singularité isolée dont le premier jet est nul. Dans...
This paper presents a classification of plane dicritical nilpotent singularities, i.e. singularities which have nilpotent linear part and infinitely many separatrices. In particular the existence of meromorphic first integrals is discussed. The same ideas are applied to other kind of dicritical singularities.
L’article est consacré aux objets locaux (germes de champs de vecteurs ou difféomorphismes) analytiques en toute dimension et spécialement à l’interaction entre les deux principales difficultés qui viennent compliquer leur étude: petits diviseurs et résonance. On introduit la technique d’arborification, qui permet d’étudier systématiquement l’influence des petits diviseurs diophantiens, puis on rappelle la définition des fonctions et monômes résurgents, indispensables dans tout contexte où intervient...