Displaying 741 – 760 of 785

Showing per page

Une caractérisation des surfaces d'Inoue-Hirzebruch

Karl Oeljeklaus, Matei Toma, Dan Zaffran (2001)

Annales de l’institut Fourier

On montre que parmi les surfaces compactes complexes de classe V I I 0 avec b 2 > 0 , les surfaces d’Inoue-Hirzebruch sont caractérisées par le fait qu’elles possèdent deux champs de vecteurs tordus. Ce résultat est un pas vers la compréhension des feuilletages sur les surfaces V I I 0 .

Uniformization of the leaves of a rational vector field

Alberto Candel, X. Gómez-Mont (1995)

Annales de l'institut Fourier

We study the analytic structure of the leaves of a holomorphic foliation by curves on a compact complex manifold. We show that if every leaf is a hyperbolic surface then they can be simultaneously uniformized in a continuous manner. In case the manifold is complex projective space a sufficient condition is that there are no algebraic leaf.

Universal isomonodromic deformations of meromorphic rank 2 connections on curves

Viktoria Heu (2010)

Annales de l’institut Fourier

We consider tracefree meromorphic rank 2 connections over compact Riemann surfaces of arbitrary genus. By deforming the curve, the position of the poles and the connection, we construct the global universal isomonodromic deformation of such a connection. Our construction, which is specific to the tracefree rank 2 case, does not need any Stokes analysis for irregular singularities. It is thereby more elementary than the construction in arbitrary rank due to B. Malgrange and I. Krichever and it includes...

[unknown]

Raimundo Araújo dos Santos, Maria A.B. Hohlenwerger, Osamu Saeki, Taciana O. Souza (0)

Annales de l’institut Fourier

Vector fields and foliations on compact surfaces of class VII 0

Georges Dloussky, Karl Oeljeklaus (1999)

Annales de l'institut Fourier

It is well-known that minimal compact complex surfaces with b 2 > 0 containing global spherical shells are in the class VII 0 of Kodaira. In fact, there are no other known examples. In this paper we prove that all surfaces with global spherical shells admit a singular holomorphic foliation. The existence of a numerically anticanonical divisor is a necessary condition for the existence of a global holomorphic vector field. Conversely, given the existence of a numerically anticanonical divisor, surfaces...

Currently displaying 741 – 760 of 785