Milton's conjecture on the regularity of solutions to isotropic equations
Daniel Faraco (2003)
Annales de l'I.H.P. Analyse non linéaire
Franco Brezzi, Annalisa Buffa, Konstantin Lipnikov (2009)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent norm are derived.
Franco Brezzi, Annalisa Buffa, Konstantin Lipnikov (2008)
ESAIM: Mathematical Modelling and Numerical Analysis
We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent H1 norm are derived.
Batista, E.D., Castillo, J.E. (2008)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
E. Gonzalez, U. Massari (1981)
Manuscripta mathematica
Ricardo Sà Earp, Eric Toubiana (2010)
Annales de l’institut Fourier
We construct geometric barriers for minimal graphs in We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces.In , we solve the Dirichlet problem for the vertical minimal equation in a convex domain taking arbitrarily continuous finite boundary and asymptotic boundary data.We prove...
Lindblad, Hans (1998)
Documenta Mathematica
Jih-Hsin Cheng, Jenn-Fang Hwang, Andrea Malchiodi, Paul Yang (2005)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
We consider surfaces immersed in three-dimensional pseudohermitian manifolds. We define the notion of (p-)mean curvature and of the associated (p-)minimal surfaces, extending some concepts previously given for the (flat) Heisenberg group. We interpret the p-mean curvature not only as the tangential sublaplacian of a defining function, but also as the curvature of a characteristic curve, and as a quantity in terms of calibration geometry. As a differential equation, the p-minimal surface equation...
Tseluiko, Dmitri (2002)
Balkan Journal of Geometry and its Applications (BJGA)
U. Pinkall, D. Ferus, I. Sterling (1992)
Journal für die reine und angewandte Mathematik
Erhard Heinz (1983)
Mathematische Zeitschrift
Boris Buffoni, Louis Jeanjean (1993)
Annales de l'I.H.P. Analyse non linéaire
El Amrouss, A.R., Moussaoui, M. (2000)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Andrzej Szulkin (1986)
Annales de l'I.H.P. Analyse non linéaire
Cuesta, Mabel (2003)
Abstract and Applied Analysis
Mette Iversen, Dario Mazzoleni (2014)
ESAIM: Control, Optimisation and Calculus of Variations
We consider the variational problem inf{αλ1(Ω) + βλ2(Ω) + (1 − α − β)λ3(Ω) | Ω open in ℝn, |Ω| ≤ 1}, for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser is connected.
G. Wolansky (2009)
Annales de l'I.H.P. Analyse non linéaire
F. Alouges, J. M. Ghidaglia (1997)
Annales de l'I.H.P. Physique théorique
Pierre Jammes (2012)
Bulletin de la Société Mathématique de France
Soit une variété hyperbolique compacte de dimension 3, de diamètre et de volume . Si on note la -ième valeur propre du laplacien de Hodge-de Rham agissant sur les 1-formes coexactes de , on montre que et , où est une constante ne dépendant que de , et est le nombre de composantes connexes de la partie mince de . En outre, on montre que pour toute 3-variété hyperbolique de volume fini avec cusps, il existe une suite de remplissages compacts de , de diamètre telle que et .
J.-M. Delort (1999)
Annales de l'I.H.P. Analyse non linéaire