The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
180
In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation , where are periodic in for and 0 is in a gap of the spectrum of ; . If for an appropriate constant , we show that this equation has a nontrivial solution.
In this paper we establish a variant
and generalized weak linking
theorem, which contains more delicate result and insures the existence of
bounded
Palais–Smale sequences of a strongly indefinite functional.
The abstract result will be used to study the
semilinear Schrödinger equation , where N ≥ 4; V,K,g are periodic
in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum
of -Δ + V; K>0. If for an
appropriate constant c, we show that this equation has a
nontrivial solution.
The paper deals with the existence of periodic solutions of the boundary value problem for nonlinear heat equation, where various types of nonlinearities are considered. The proofs are based on the investigation of Liapunov-Schmidt bifurcation system via Leray-Schauder degree theory.
This paper is concerned with a Cauchy problem for the three-dimensional (3D) nonhomogeneous incompressible heat conducting magnetohydrodynamic (MHD) equations in the whole space. First of all, we establish a weak Serrin-type blowup criterion for strong solutions. It is shown that for the Cauchy problem of the 3D nonhomogeneous heat conducting MHD equations, the strong solution exists globally if the velocity satisfies the weak Serrin's condition. In particular, this criterion is independent of the...
In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.
The purpose of this paper is to study a model coupling an incompressible viscous fiuid with an elastic structure in a bounded container. We prove the existence of weak solutions à la Leray as long as no collisions occur.
We consider an initial-boundary value problem for a fourth order degenerate parabolic equation. Under some assumptions on the initial value, we establish the existence of weak solutions by the discrete-time method. The asymptotic behavior and the finite speed of propagation of perturbations of solutions are also discussed.
In this paper we consider the following Dirichlet problem for elliptic systems:
where is a Dirac operator in Euclidean space, is defined in a bounded Lipschitz domain in and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned...
In this work, we study the existence and uniqueness of weak solutions of fourth-order degenerate parabolic equation with variable exponent using the difference and variation methods.
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law if and if , , depending on the model for the heat flux.
Currently displaying 41 –
60 of
180