Page 1 Next

Displaying 1 – 20 of 55

Showing per page

L 2 well-posed Cauchy problems and symmetrizability of first order systems

Guy Métivier (2014)

Journal de l’École polytechnique — Mathématiques

The Cauchy problem for first order system L ( t , x , t , x ) is known to be well-posed in L 2 when it admits a microlocal symmetrizer S ( t , x , ξ ) which is smooth in ξ and Lipschitz continuous in ( t , x ) . This paper contains three main results. First we show that a Lipschitz smoothness globally in ( t , x , ξ ) is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of full symmetrizers having the same smoothness. This notion was first introduced in [FL67]. This is the key point...

L estimates of solution for m -Laplacian parabolic equation with a nonlocal term

Pulun Hou, Caisheng Chen (2011)

Czechoslovak Mathematical Journal

In this paper, we consider the global existence, uniqueness and L estimates of weak solutions to quasilinear parabolic equation of m -Laplacian type u t - div ( | u | m - 2 u ) = u | u | β - 1 Ω | u | α d x in Ω × ( 0 , ) with zero Dirichlet boundary condition in Ω . Further, we obtain the L estimate of the solution u ( t ) and u ( t ) for t > 0 with the initial data u 0 L q ( Ω ) ( q > ...

La transformation de Fourier pour les 𝒟 -modules

Liviu Daia (2000)

Annales de l'institut Fourier

Sur n vu comme variété algébrique, soient la transformation de Fourier pour les 𝒟 -modules, + la transformation de Fourier faisceautique de Brylinsky-Malgrange-Verdier, et 𝒮 o l le foncteur “solutions”. On prouve alors que pour tout 𝒟 -module 1-spécialisable à l’infini , on a un isomorphisme 𝒮 o l ( ) + 𝒮 o l ( ) . Le résultat a été conjecturé en 1988 par B. Malgrange, qui l’a prouvé pour module de type fini sur l’algèbre de Weyl.

La variété caractéristique d'un système différentiel analytique

Bernard Malgrange (2000)

Annales de l'institut Fourier

La variété caractéristique d’un système différentiel linéaire analytique possède les deux propriétés classiques suivantes :1. Indépendance de la filtration.2. Intégrabilité (i.e. stabilité par crochet de Poisson).On montre ici que la première propriété reste vraie hors de la section nulle pour les systèmes non linéaires. La seconde propriété reste vraie génériquement (ailleurs, la question reste ouverte).

Lagrangian approximations and weak solutions of the Navier-Stokes equations

Werner Varnhorn (2008)

Banach Center Publications

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles of the fluid....

Lanczos-like algorithm for the time-ordered exponential: The * -inverse problem

Pierre-Louis Giscard, Stefano Pozza (2020)

Applications of Mathematics

The time-ordered exponential of a time-dependent matrix 𝖠 ( t ) is defined as the function of 𝖠 ( t ) that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in 𝖠 ( t ) . The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by * . Yet, the existence of such inverses, crucial to...

Large time regular solutions to the MHD equations in cylindrical domains

Wisam Alame, Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in W 2 , 1 without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.

Currently displaying 1 – 20 of 55

Page 1 Next