Homogenization of scalar hysteresis operators
Questo articolo considera una successione di equazioni differenziali a derivate parziali non lineari in forma di divergenza del tipo in un dominio limitato dello spazio -dimensionale; e sono matrici con coefficenti limitati, e è invertibile e la sua matrice inversa ha anche coefficenti limitati. La non linearità è dovuta alla funzione ; la condizione di crescita, la monotonicità e le ipotesi di coercitività sono modellate sul -Laplaciano, , ed assicurano l'esistenza di una soluzione...
The main focus in this paper is on homogenization of the parabolic problem . Under certain assumptions on , there exists a -limit , which we characterize by means of multiscale techniques for , . Also, an interpretation of asymptotic expansions in the context of two-scale convergence is made.
In this paper we prove a H-convergence type result for the homogenization of systems the coefficients of which satisfy a functional ellipticity condition and a strong equi-integrability condition. The equi-integrability assumption allows us to control the fact that the coefficients are not equi-bounded. Since the truncation principle used for scalar equations does not hold for vector-valued systems, we present an alternative approach based on an approximation result by Lipschitz functions due to...
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
We address the homogenization of an eigenvalue problem for the neutron transport equation in a periodic heterogeneous domain, modeling the criticality study of nuclear reactor cores. We prove that the neutron flux, corresponding to the first and unique positive eigenvector, can be factorized in the product of two terms, up to a remainder which goes strongly to zero with the period. One term is the first eigenvector of the transport equation in the periodicity cell. The other term is the...
The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.
The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...
In the present contribution we discuss mathematical homogenization and numerical solution of the elliptic problem describing convection-diffusion processes in a material with fine periodic structure. Transport processes such as heat conduction or transport of contaminants through porous media are typically associated with convection-diffusion equations. It is well known that the application of the classical Galerkin finite element method is inappropriate in this case since the discrete solution...
We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined...
We homogenize a class of nonlinear differential equations set in highly heterogeneous media. Contrary to the usual approach, the coefficients in the equation characterizing the material properties are supposed to be uncertain functions from a given set of admissible data. The problem with uncertainties is treated by means of the worst scenario method, when we look for a solution which is critical in some sense.
In the paper a Barenblatt-Biot consolidation model for flows in periodic porous elastic media is derived by means of the two-scale convergence technique. Starting with the fluid flow of a slightly compressible viscous fluid through a two-component poro-elastic medium separated by a periodic interfacial barrier, described by the Biot model of consolidation with the Deresiewicz-Skalak interface boundary condition and assuming that the period is too small compared with the size of the medium, the limiting...