Displaying 2021 – 2040 of 5234

Showing per page

Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian

Jamel El Kamel, Chokri Yacoub (2005)

Annales mathématiques Blaise Pascal

In this paper we consider the modified wave equation associated with a class of radial Laplacians L generalizing the radial part of the Laplace-Beltrami operator on hyperbolic spaces or Damek-Ricci spaces. We show that the Huygens’ principle and the equipartition of energy hold if the inverse of the Harish-Chandra c -function is a polynomial and that these two properties hold asymptotically otherwise. Similar results were established previously by Branson, Olafsson and Schlichtkrull in the case of...

Hyperbolic Equations in Uniform Spaces

J. W. Cholewa, Tomasz Dlotko (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

The paper is devoted to the Cauchy problem for a semilinear damped wave equation in the whole of ℝ ⁿ. Under suitable assumptions a bounded dissipative semigroup of global solutions is constructed in a locally uniform space H ̇ ¹ l u ( ) × L ̇ ² l u ( ) . Asymptotic compactness of this semigroup and the existence of a global attractor are then shown.

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed....

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed. Elements of a discretization of the eigenvalue...

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed. Elements of a discretization of the eigenvalue...

Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation

Markus Bachmayr (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In the framework of an explicitly correlated formulation of the electronic Schrödinger equation known as the transcorrelated method, this work addresses some fundamental issues concerning the feasibility of eigenfunction approximation by hyperbolic wavelet bases. Focusing on the two-electron case, the integrability of mixed weak derivatives of eigenfunctions of the modified problem and the improvement compared to the standard formulation are discussed....

Hypoelliptic estimates for some linear diffusive kinetic equations

Frédéric Hérau (2010)

Journées Équations aux dérivées partielles

This note is an announcement of a forthcoming paper [13] in collaboration with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and linear Landau-type operators. Linear Landau-type equations are a class of inhomogeneous kinetic equations with anisotropic diffusion whose study is motivated by the linearization of the Landau equation near the Maxwellian distribution. By introducing a microlocal method by multiplier which can be adapted to various hypoelliptic kinetic equations,...

Currently displaying 2021 – 2040 of 5234