Analytical solution of the hyperbolic heat conduction equation for moving semi-infinite medium under the effect of time-dependent laser heat source.
We study the analyticity of the semigroups generated by some degenerate second order differential operators in the space C([α,β]), where [α,β] is a bounded real interval. The asymptotic behaviour and regularity with respect to the space variable are also investigated.
This note reports on recent results on the anisotropic Calderón problem obtained in a joint work with Carlos E. Kenig, Mikko Salo and Gunther Uhlmann [8]. The approach is based on the construction of complex geometrical optics solutions to the Schrödinger equation involving phases introduced in the work [12] of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We characterize those manifolds where the construction is possible, and give applications to uniqueness for the corresponding anisotropic...
In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form , where Extending to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.