Displaying 101 – 120 of 249

Showing per page

Computation of bifurcated branches in a free boundary problem arising in combustion theory

Olivier Baconneau, Claude-Michel Brauner, Alessandra Lunardi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface. Its planar travelling-wave solutions are orbitally stable provided the bifurcation parameter u * does not exceed a critical value u * c . The latter is the limit of a decreasing sequence ( u * k ) of bifurcation points. The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our technique is based on the elimination of the unknown front, turning the problem into a fully nonlinear...

Computing the differential of an unfolded contact diffeomorphism

Klaus Böhmer, Drahoslava Janovská, Vladimír Janovský (2003)

Applications of Mathematics

Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism Φ linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential D Φ ( 0 ) of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of D Φ ( 0 ) . Singularity classes containing bifurcation points with c o d i m 3 , c o r a n k = 1 are considered.

Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit

Benoît Perthame, Stephane Génieys (2010)

Mathematical Modelling of Natural Phenomena

The nonlocal Fisher equation has been proposed as a simple model exhibiting Turing instability and the interpretation refers to adaptive evolution. By analogy with other formalisms used in adaptive dynamics, it is expected that concentration phenomena (like convergence to a sum of Dirac masses) will happen in the limit of small mutations. In the present work we study this asymptotics by using a change of variables that leads to a constrained Hamilton-Jacobi equation. We prove the convergence analytically...

Conditions aux limites approchées pour les couches minces périodiques

Habib Ammari, Chiraz Latiri-Grouz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Nous écrivons et nous justifions des conditions aux limites approchées pour des couches minces périodiques recouvrant un objet parfaitement conducteur en polarisation transverse électrique et transverse magnétique.

Conditions for periodic vibrations in a symmetric n-string

Claude Gauthier (2008)

Open Mathematics

A symmetric N-string is a network of N ≥ 2 sections of string tied together at one common mobile extremity. In their equilibrium position, the sections of string form N angles of 2π/N at their junction point. Considering the initial and boundary value problem for small-amplitude oscillations perpendicular to the plane of the N-string at rest, we obtain conditions under which the solution will be periodic with an integral period.

Conditions implying regularity of the three dimensional Navier-Stokes equation

Stephen Montgomery-Smith (2005)

Applications of Mathematics

We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.

Currently displaying 101 – 120 of 249