Comparison theorems for Riccati inequalities arising in the theory of PDEs with -Laplacian.
In questa Nota gli autori presentano alcuni risultati riguardanti il comportamento alla frontiera di domini non cilindrici delle soluzioni positive dell'equazione del calore. Una conseguenza è che due soluzioni positive qualunque, che si annullano su una parte della frontiera laterale, tendono a zero con lo stesso ordine.
In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function . The main idea of the proof relies on the compensated compactness theory.
Le but de cet article est l’étude de la compétition Réaction-Diffusion pour un problème de type où est un opérateur de Lerray-Lions, est une fonction continue croissante et la réaction est une fonction croissante qui dépend de l’espace . On suppose que les coefficients de diffusion et de Réaction dépendent du paramètre avec et/ou tends vers lorsque . Dans le cas où, le coefficient de réaction est très rapide, nous étudions le comportement asymptotique lorsque de la solution...
We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary way. We find a two-parametric set of the eigenvalues of such operator and construct their complete asymptotic expansions. We show that this two-parametric set contains any prescribed number of the first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the eigenfunctions...
We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary way. We find a two-parametric set of the eigenvalues of such operator and construct their complete asymptotic expansions. We show that this two-parametric set contains any prescribed number of the first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the eigenfunctions...
We prove a subelliptic estimate for systems of complex vector fields under some assumptions that generalize the essential pseudoconcavity for CR manifolds, that was first introduced by two of the authors, and the Hörmander’s bracket condition for real vector fields.Applications are given to prove the hypoellipticity of first order systems and second order partial differential operators.Finally we describe a class of compact homogeneous CR manifolds for which the distribution of vector fields satisfies...
Les données, i.e. l’ouvert et la force appliquée , sont supposées de classe . Il est montré que toute solution des équations de Navier-Stokes dans l’ouvert , bornée dans ( ou ) sur un intervalle de temps semi-infini , est aussi bornée, pour , dans tous les espaces . Il en résulte que tout ensemble fonctionnel invariant ou attracteur borné dans (ou même , ) est porté par . Le cas où les forces appliquées dérivent d’un potentiel (i.e. ) est abordé : il est montré que toute solution...
Nous étudions le comportement pour les grands temps de l’équation de Schrödinger-Poisson (NLSP) avec un terme de force extérieure supplémentaire et un terme de dissipation d’ordre zéro, la variable d’espace étant dans un domaine borné de . Nous démontrons que ce comportement est décrit par un attracteur global de dimension de Hausdorff finie pour la topologie forte de .