Displaying 1181 – 1200 of 5234

Showing per page

Diffusion limit of the Lorentz model : asymptotic preserving schemes

Christophe Buet, Stéphane Cordier, Brigitte Lucquin-Desreux, Simona Mancini (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...

Diffusion Limit of the Lorentz Model: Asymptotic Preserving Schemes

Christophe Buet, Stéphane Cordier, Brigitte Lucquin-Desreux, Simona Mancini (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the diffusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diffusive limit, the right discrete diffusion equation with the same value of the diffusion coefficient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization...

Diffusion phenomenon for second order linear evolution equations

Ryo Ikehata, Kenji Nishihara (2003)

Studia Mathematica

We present an abstract theory of the diffusion phenomenon for second order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a new device developed in Ikehata-Matsuyama [5] is applied. Several applications to damped linear wave equations in unbounded domains are also given.

Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method

S. S. Ravindran (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the boundary penalty method for optimal control of unsteady Navier–Stokes type system that has been proposed as an alternative for Dirichlet boundary control. Existence and uniqueness of solutions are demonstrated and existence of optimal control for a class of optimal control problems is established. The asymptotic behavior of solution, with respect to the penalty parameter ϵ, is studied. In particular, we prove convergence of solutions of penalized control problem to the...

Discrete maximum principle for interior penalty discontinuous Galerkin methods

Tamás Horváth, Miklós Mincsovics (2013)

Open Mathematics

A class of linear elliptic operators has an important qualitative property, the so-called maximum principle. In this paper we investigate how this property can be preserved on the discrete level when an interior penalty discontinuous Galerkin method is applied for the discretization of a 1D elliptic operator. We give mesh conditions for the symmetric and for the incomplete method that establish some connection between the mesh size and the penalty parameter. We then investigate the sharpness of...

Dispersive and Strichartz estimates for the wave equation in domains with boundary

Oana Ivanovici (2010)

Journées Équations aux dérivées partielles

In this note we consider a strictly convex domain Ω d of dimension d 2 with smooth boundary Ω and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.

Dispersive and Strichartz estimates on H-type groups

Martin Del Hierro (2005)

Studia Mathematica

Our purpose is to generalize the dispersive inequalities for the wave equation on the Heisenberg group, obtained in [1], to H-type groups. On those groups we get optimal time decay for solutions to the wave equation (decay as t - p / 2 ) and the Schrödinger equation (decay as t ( 1 - p ) / 2 ), p being the dimension of the center of the group. As a corollary, we obtain the corresponding Strichartz inequalities for the wave equation, and, assuming that p > 1, for the Schrödinger equation.

Dispersive estimates and absence of embedded eigenvalues

Herbert Koch, Daniel Tataru (2005)

Journées Équations aux dérivées partielles

In [2] Kenig, Ruiz and Sogge proved u L 2 n n - 2 ( n ) L u L 2 n n + 2 ( n ) provided n 3 , u C 0 ( n ) and L is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with C 2 coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in L n + 1 2 and variants thereof.

Currently displaying 1181 – 1200 of 5234