Displaying 1541 – 1560 of 5234

Showing per page

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in n

Reinhard Farwig, Hermann Sohr (2009)

Czechoslovak Mathematical Journal

For a bounded domain Ω n , n 3 , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system - Δ u + u · u + p = f , div u = k , u | Ω = g with u L q , q n , and very general data classes for f , k , g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of...

Existence, uniqueness and stability for spatially inhomogeneous Becker-Döring equations with diffusion and convection terms

P. B. Dubovski, S.-Y. Ha (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider the spatially inhomogeneous Bekker-Döring infinite-dimensional kinetic system describing the evolution of coagulating and fragmenting particles under the influence of convection and diffusion. The simultaneous consideration of opposite coagulating and fragmenting processes causes many additional difficulties in the investigation of spatially inhomogeneous problems, where the space variable changes differently for distinct particle sizes. To overcome these difficulties, we use a modified...

Explosion pour l’équation de Schrödinger au régime du “log log”

Nicolas Burq (2005/2006)

Séminaire Bourbaki

On présente dans cet exposé des résultats récents de Merle et Raphael sur l’analyse des solutions explosives de l’équation de Schrödinger L 2 critique. On s’intéresse en particulier à leur preuve du fait que les solutions d’énergie négative (dont on savait qu’elles explosaient par l’argument du viriel) et dont la norme L 2 est proche de celle de l’état fondamental, explosent au régime du “log log”et que ce comportement est stable.

Explosive solutions of semilinear elliptic systems with gradient term.

Marius Ghergu, Vicentiu Radulescu (2003)

RACSAM

Estudiamos la existencia de soluciones del sistema elíptico no lineal Δu + |∇u| = p(|x|)f(v), Δv + |∇v| = q(|x|)g(u) en Ω que explotan en el borde. Aquí Ω es un dominio acotado de RN o el espacio total. Las nolinealidades f y g son funciones continuas positivas mientras que los potenciales p y q son funciones continuas que satisfacen apropiadas condiciones de crecimiento en el infinito. Demostramos que las soluciones explosivas en el borde dejan de existir si f y g son sublineales. Esto se tiene...

Currently displaying 1541 – 1560 of 5234