Displaying 141 – 160 of 249

Showing per page

Continuity of attractors

Geneviève Raugel (1989)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Continuity of the quenching time in a semilinear parabolic equation

Théodore Boni, Firmin N'Gohisse (2008)

Annales UMCS, Mathematica

In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.

Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem

Claudio Marchi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space  [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.

Continuous dependence for solution classes of Euler-Lagrange equations generated by linear growth energies

Ken Shirakawa (2009)

Banach Center Publications

In this paper, a one-dimensional Euler-Lagrange equation associated with the total variation energy, and Euler-Lagrange equations generated by approximating total variations with linear growth, are considered. Each of the problems presented can be regarded as a governing equation for steady-states in solid-liquid phase transitions. On the basis of precise structural analysis for the solutions, the continuous dependence between the solution classes of approximating problems and that of the limiting...

Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics

Yuanfei Li, Shengzhong Xiao (2022)

Applications of Mathematics

In this paper, we consider an initial boundary value problem for the two-dimensional primitive equations of large scale oceanic dynamics. Assuming that the depth of the ocean is a positive constant, we establish rigorous a priori bounds of the solution to problem. With the aid of these a priori bounds, the continuous dependence of the solution on changes in the boundary terms is obtained.

Currently displaying 141 – 160 of 249