Geometric optics with critical vanishing viscosity for one-dimensional semilinear initial value problems.
We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.
We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two....
The problems of Gevrey hypoellipticity for a class of degenerated quasi-elliptic operators are studied by several authors (see [1]–[5]). In this paper we obtain the Gevrey hypoellipticity for a degenerated quasi-elliptic operator in , without any restriction on the characteristic polyhedron.
We deal with a generalization of the Caginalp phase-field model associated with Neumann boundary conditions. We prove that the problem is well posed, before studying the long time behavior of solutions. We establish the existence of the global attractor, but also of exponential attractors. Finally, we study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist.
The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution to this problem. Moreover, a necessary and sufficient condition for the non-global existence...
In this paper several models in virus dynamics with and without immune response are discussed concerning asymptotic behaviour. The case of immobile cells but diffusing viruses and T-cells is included. It is shown that, depending on the value of the basic reproductive number R0 of the virus, the corresponding equilibrium is globally asymptotically stable. If R0 < 1 then the virus-free equilibrium has this property, and in case R0 > 1 there is a unique disease equilibrium which takes over this...
In this paper, we discuss the special diffusive hematopoiesis model with Neumann boundary condition. Sufficient conditions are provided for the global attractivity and oscillation of the equilibrium for Eq. (*), by using a new theorem we stated and proved. When P(t, χ) does not depend on a spatial variable χ ∈ Ω, these results are also true and extend or complement existing results. Finally, existence and stability of the Hopf bifurcation for Eq. (*) are studied.
We prove the existence of a compact connected global attractor for a class of abstract semilinear parabolic equations with infinite delay.