Global weak solutions of the wave map system to compact homogeneous spaces.
We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.
We consider a one-dimensional porous-elastic system with porous-viscosity and a distributed delay of neutral type. First, we prove the global existence and uniqueness of the solution by using the Faedo-Galerkin approximations along with some energy estimates. Then, based on the energy method with some appropriate assumptions on the kernel of neutral delay term, we construct a suitable Lyapunov functional and we prove that, despite of the destructive nature of delays in general, the damping mechanism...
We prove the global well-posedness of the 2-D Boussinesq system with temperature dependent thermal diffusivity and zero viscosity coefficient.
In this paper we prove the existence of a global φ-attractor in the weak topology of the natural phase space for the family of multi-valued processes generated by solutions of a nonautonomous modified 3D Bénard system in unbounded domains for which Poincaré inequality takes place.
Under some assumptions on the function p(x), we obtain global gradient estimates for weak solutions of the p(x)-Laplacian type equation in .
We study, with purely analytic tools, existence, uniqueness and gradient estimates of the solutions to the Neumann problems associated with a second order elliptic operator with unbounded coefficients in spaces of continuous functions in an unbounded open set Ω in .
In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds for the following general heat equation where is a constant and is a differentiable function defined on . We suppose that the Bakry-Émery curvature and the -dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.
Pointwise gradient bounds via Riesz potentials like those available for the Poisson equation actually hold for general quasilinear equations.
A sharp estimate for the decreasing rearrangement of the length of the gradient of solutions to a class of nonlinear Dirichlet and Neumann elliptic boundary value problems is established under weak regularity assumptions on the domain. As a consequence, the problem of gradient bounds in norms depending on global integrability properties is reduced to one-dimensional Hardy-type inequalities. Applications to gradient estimates in Lebesgue, Lorentz, Zygmund, and Orlicz spaces are presented.