Displaying 141 – 160 of 191

Showing per page

Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source

Xiangdong Zhao (2024)

Czechoslovak Mathematical Journal

We study the chemotaxis system with singular sensitivity and logistic-type source: u t = Δ u - χ · ( u v / v ) + r u - μ u k , 0 = Δ v - v + u under the non-flux boundary conditions in a smooth bounded domain Ω n , χ , r , μ > 0 , k > 1 and n 1 . It is shown with k ( 1 , 2 ) that the system possesses a global generalized solution for n 2 which is bounded when χ > 0 is suitably small related to r > 0 and the initial datum is properly small, and a global bounded classical solution for n = 1 .

Global stability of travelling fronts for a damped wave equation with bistable nonlinearity

Thierry Gallay, Romain Joly (2009)

Annales scientifiques de l'École Normale Supérieure

We consider the damped wave equation α u t t + u t = u x x - V ' ( u ) on the whole real line, where V is a bistable potential. This equation has travelling front solutions of the form u ( x , t ) = h ( x - s t ) which describe a moving interface between two different steady states of the system, one of which being the global minimum of V . We show that, if the initial data are sufficiently close to the profile of a front for large | x | , the solution of the damped wave equation converges uniformly on to a travelling front as t + . The proof of this global stability...

Global strong solutions of a 2-D new magnetohydrodynamic system

Ruikuan Liu, Jiayan Yang (2020)

Applications of Mathematics

The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic model in the two dimensional space. Based on Agmon, Douglis, and Nirenberg’s estimates for the stationary Stokes equation and Solonnikov’s theorem on L p - L q -estimates for the evolution Stokes equation, it is shown that this coupled magnetohydrodynamic equations possesses a global strong solution. In addition, the uniqueness of the global strong solution is obtained.

Global time estimates for solutions to equations of dissipative type

Michael Ruzhansky, James Smith (2005)

Journées Équations aux dérivées partielles

Global time estimates of L p - L q norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.

Currently displaying 141 – 160 of 191