Displaying 161 – 180 of 219

Showing per page

Time and space Sobolev regularity of solutions to homogeneous parabolic equations

Gabriella Di Blasio (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give necessary and sufficient conditions on the initial data such that the solutions of parabolic equations have a prescribed Sobolev regularity in time and space.

Time asymptotic description of an abstract Cauchy problem solution and application to transport equation

Boulbeba Abdelmoumen, Omar Jedidi, Aref Jeribi (2014)

Applications of Mathematics

In this paper, we study the time asymptotic behavior of the solution to an abstract Cauchy problem on Banach spaces without restriction on the initial data. The abstract results are then applied to the study of the time asymptotic behavior of solutions of an one-dimensional transport equation with boundary conditions in L 1 -space arising in growing cell populations and originally introduced by M. Rotenberg, J. Theoret. Biol. 103 (1983), 181–199.

Time-periodic solutions of a quasilinear beam equation via accelerated convergence methods

Eduard Feireisl (1988)

Aplikace matematiky

The author investigates time-periodic solutions of the quasilinear beam equation with the help of accelerated convergence methods. Using the Newton iteration scheme, the problem is approximated by a sequence of linear equations solved via the Galerkin method. The derivatiove loss inherent to this kind of problems is compensated by taking advantage of smoothing operators.

Currently displaying 161 – 180 of 219