On the boundary element method for the Signorini problem of the Laplacian.
We consider the Robin eigenvalue problem in , on where , is a bounded domain and is a real parameter. We investigate the behavior of the eigenvalues of this problem as functions of the parameter . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative . Assuming that the boundary is of class we obtain estimates to the difference between the -th eigenvalue of the Laplace operator with Dirichlet...
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition considered in a two-dimensional nonpolygonal domain with a curved boundary. The existence and uniqueness of the solution of the continuous problem is a consequence of the monotone operator theory. The main attention is paid to the effect of the basic finite element variational crimes: approximation of the curved boundary by a polygonal one and the evaluation of integrals by numerical...
In this paper we study the behavior of solutions of the boundary value problem for the Poisson equation in a partially perforated domain with arbitrary density of cavities and mixed type conditions on their boundary. The corresponding spectral problem is also considered. A short communication of similar results can be found in [1].