Previous Page 4

Displaying 61 – 71 of 71

Showing per page

Sur la théorie du potentiel dans les domaines de John.

Alano Ancona (2007)

Publicacions Matemàtiques

Using rather elementary and direct methods, we first recover and add on some results of Aikawa-Hirata-Lundh about the Martin boundary of a John domain. In particular we answer a question raised by these authors. Some applications are given and the case of more general second order elliptic operators is also investigated. In the last parts of the paper two potential theoretic results are shown in the framework of uniform domains or the framework of hyperbolic manifolds.

Sur une méthode itérative de résolution de problèmes aux limites elliptiques non linéaires

Moïse Sibony (1977)

Aplikace matematiky

Soit A un opérateur non nécessairement linéaire d’un Hilbert de l’équation A u = f , pour f donné dans ' . Nous étudions la convergence du schéma itératif suivant: u n + 1 = u n - ρ B - 1 ( A u n - f ) aou B est fonction d’un opérateur auto-adjoint S choisi de telle sorte que l’inversion de B soit immédiate numériquement. Par exemple B = [ I - ( I - ρ 0 S ) m ] - 1 S avec un entier m et une constante ρ 0 convenablement choisis. Nous appliquons les résultats à un problème aux limites non linéaires avec résultats numériques.

Symmetry problems 2

N. S. Hoang, A. G. Ramm (2009)

Annales Polonici Mathematici

Some symmetry problems are formulated and solved. New simple proofs are given for some symmetry problems studied earlier. One of the results is as follows: if a single-layer potential of a surface, homeomorphic to a sphere, with a constant charge density, is equal to c/|x| for all sufficiently large |x|, where c > 0 is a constant, then the surface is a sphere.

Symplectic torus actions with coisotropic principal orbits

Johannes Jisse Duistermaat, Alvaro Pelayo (2007)

Annales de l’institut Fourier

In this paper we completely classify symplectic actions of a torus T on a compact connected symplectic manifold ( M , σ ) when some, hence every, principal orbit is a coisotropic submanifold of ( M , σ ) . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...

Currently displaying 61 – 71 of 71

Previous Page 4