Displaying 261 – 280 of 591

Showing per page

On the maximal operator associated with the free Schrödinger equation

Sichun Wang (1997)

Studia Mathematica

For d > 1, let ( S d f ) ( x , t ) = ʃ n e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , x n , where f̂ is the Fourier transform of f S ( n ) , and ( S d * f ) ( x ) = s u p 0 < t < 1 | ( S d f ) ( x , t ) | its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) ( ʃ | x | < R | ( S d * f ) ( x ) | p d x ) 1 / p C R f H 1 / 4 holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.

Opening gaps in the spectrum of strictly ergodic Schrödinger operators

Artur Avila, Jairo Bochi, David Damanik (2012)

Journal of the European Mathematical Society

We consider Schrödinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap,...

Currently displaying 261 – 280 of 591