Eigenvalue problems and bifurcation of nonhomogeneous semilinear elliptic equations in exterior strip domains.
We consider the linear eigenvalue problem -Δu = λV(x)u, , and its nonlinear generalization , . The set Ω need not be bounded, in particular, is admitted. The weight function V may change sign and may have singular points. We show that there exists a sequence of eigenvalues .
We consider a class of semilinear elliptic equations of the formwhere , is a periodic, positive function and is modeled on the classical two well Ginzburg-Landau potential . We look for solutions to (1) which verify the asymptotic conditions as uniformly with respect to . We show via variational methods that if is sufficiently small and is not constant, then (1) admits infinitely many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.
We consider a class of semilinear elliptic equations of the form 15.7cm - where , is a periodic, positive function and is modeled on the classical two well Ginzburg-Landau potential . We look for solutions to ([see full textsee full text]) which verify the asymptotic conditions as uniformly with respect to . We show via variational methods that if ε is sufficiently small and a is not constant, then ([see full textsee full text]) admits infinitely many of such solutions, distinct...
We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.