Existence of positive solutions to a superlinear elliptic problem.
We consider Kirchhoff type problems of the form ⎧ -M(ρ(u))(div(a(|∇u|)∇u) - a(|u|)u) = K(x)f(u) in Ω ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω where , N ≥ 3, is a smooth bounded domain, ν is the outward unit normal to ∂Ω, , M: [0,∞) → ℝ is a continuous function, , and f: ℝ → ℝ is a continuous function not satisfying the Ambrosetti-Rabinowitz type condition. Using variational methods, we obtain some existence and multiplicity results.
This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type where is a bounded domain of , . In particular, we do not require strict monotonicity of the principal part , while the approach is based on the variational method and results of the variable exponent function spaces.
In this paper we study a model problem describing the movement of a glacier under Glen’s flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and...
In this paper we study a model problem describing the movement of a glacier under Glen's flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and...