Stable defects of minimizers of constrained variational principles
The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.
In questo articolo studiamo problemi di Dirichlet singolari, lineari e semilineari, della forma in , su , dove è un dominio in e o con (o nonlinearità più generali). In tali problemi bidimensionali emergono alcune difficoltà a causa della non validità della disuguaglianza di Hardy in e a causa delle invarianze dell'equazione . Pertanto opportune condizioni su e sono necessarie al fine di garantire l'esistenza di una soluzione positiva. Per esempio, se è una curva non costante...
We prove the periodicity of all H2-local minimizers with low energy for a one-dimensional higher order variational problem. The results extend and complement an earlier work of Stefan Müller which concerns the structure of global minimizer. The energy functional studied in this work is motivated by the investigation of coherent solid phase transformations and the competition between the effects from regularization and formation of small scale structures. With a special choice of a bilinear double...
Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under the action of the orthogonal group.
We consider the functional where is a bounded domain and is a convex function. Under general assumptions on , Crasta [Cr1] has shown that if admits a minimizer in depending only on the distance from the boundary of , then must be a ball. With some restrictions on , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...