Oblique derivative problems and invariant measures
In this paper, we make some observations on the work of Di Fazio concerning estimates, , for solutions of elliptic equations , on a domain with Dirichlet data whenever and . We weaken the assumptions allowing real and complex non-symmetric operators and boundary. We also consider the corresponding inhomogeneous Neumann problem for which we prove the similar result. The main tool is an appropriate representation for the Green (and Neumann) function on the upper half space. We propose...
A Bernoulli free boundary problem with geometrical constraints is studied. The domain Ω is constrained to lie in the half space determined by x1 ≥ 0 and its boundary to contain a segment of the hyperplane {x1 = 0} where non-homogeneous Dirichlet conditions are imposed. We are then looking for the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition simultaneously on the free boundary. The existence and uniqueness of a solution have already been addressed...
A Bernoulli free boundary problem with geometrical constraints is studied. The domain Ω is constrained to lie in the half space determined by x1 ≥ 0 and its boundary to contain a segment of the hyperplane {x1 = 0} where non-homogeneous Dirichlet conditions are imposed. We are then looking for the solution of a partial differential equation satisfying a Dirichlet and a Neumann boundary condition simultaneously on the free boundary. The existence and uniqueness of a solution have already been addressed...
We prove some comparison results for Monge-Ampère type equations in dimension two. We consider also the case of eigenfunctions and we prove a kind of reverse inequalities.
We discuss a parallel implementation of the domain decomposition method based on the macro-hybrid formulation of a second order elliptic equation and on an approximation by the mortar element method. The discretization leads to an algebraic saddle- point problem. An iterative method with a block- diagonal preconditioner is used for solving the saddle- point problem. A parallel implementation of the method is emphasized. Finally the results of numerical experiments are presented.
We obtain a description of the spectrum and estimates for generalized positive solutions of -Δu = λ(f(x) + h(u)) in Ω, , where f(x) and h(u) satisfy minimal regularity assumptions.
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
Second order elliptic systems with Dirichlet boundary conditions are solved by means of affine finite elements on regular uniform triangulations. A simple averagign scheme is proposed, which implies a superconvergence of the gradient. For domains with enough smooth boundary, a global estimate is proved in the -norm. For a class of polygonal domains the global estimate can be proven.
A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton’s or Neumann’s type. For bounded plane domains with smooth boundary the local -superconvergence of the derivatives in the -norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet’s boundary conditions is treated.