Displaying 61 – 80 of 107

Showing per page

Existence and uniqueness for a two-dimensional Ventcel problem modeling the equilibrium of a prestressed membrane

Antonio Greco, Giuseppe Viglialoro (2023)

Applications of Mathematics

This paper deals with a mixed boundary-value problem of Ventcel type in two variables. The peculiarity of the Ventcel problem lies in the fact that one of the boundary conditions involves second order differentiation along the boundary. Under suitable assumptions on the data, we first give the definition of a weak solution, and then we prove that the problem is uniquely solvable. We also consider a particular case arising in real-world applications and discuss the resulting model.

Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian

Sylwia Barnaś (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.

Existence of entropy solutions for degenerate quasilinear elliptic equations in L 1

Albo Carlos Cavalheiro (2014)

Communications in Mathematics

In this article, we prove the existence of entropy solutions for the Dirichlet problem ( P ) - div [ ω ( x ) 𝒜 ( x , u , u ) ] = f ( x ) - div ( G ) , in Ω u ( x ) = 0 , on Ω where Ω is a bounded open set of N , N 2 , f L 1 ( Ω ) and G / ω [ L p ' ( Ω , ω ) ] N .

Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems

Ahmed Ahmed, Taghi Ahmedatt, Hassane Hjiaj, Abdelfattah Touzani (2017)

Mathematica Bohemica

We consider the following quasilinear Neumann boundary-value problem of the type $$ \begin {cases} -\displaystyle \sum _{i=1}^{N}\frac {\partial }{\partial x_{i}}a_{i}\Big (x,\frac {\partial u}{\partial x_{i}}\Big ) + b(x)|u|^{p_{0}(x)-2}u = f(x,u)+ g(x,u) &\text {in} \ \Omega , \\ \quad \dfrac {\partial u}{\partial \gamma } = 0 &\text {on} \ \partial \Omega . \end {cases} $$ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev...

Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems

J. Fleckinger, J. Hernández, F. Thélin (2004)

Bollettino dell'Unione Matematica Italiana

We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.

Existence of positive radial solutions for the elliptic equations on an exterior domain

Yongxiang Li, Huanhuan Zhang (2016)

Annales Polonici Mathematici

We discuss the existence of positive radial solutions of the semilinear elliptic equation ⎧-Δu = K(|x|)f(u), x ∈ Ω ⎨αu + β ∂u/∂n = 0, x ∈ ∂Ω, ⎩ l i m | x | u ( x ) = 0 , where Ω = x N : | x | > r , N ≥ 3, K: [r₀,∞) → ℝ⁺ is continuous and 0 < r r K ( r ) d r < , f ∈ C(ℝ⁺,ℝ⁺), f(0) = 0. Under the conditions related to the asymptotic behaviour of f(u)/u at 0 and infinity, the existence of positive radial solutions is obtained. Our conditions are more precise and weaker than the superlinear or sublinear growth conditions. Our discussion is based on the fixed point...

Currently displaying 61 – 80 of 107