Displaying 141 – 160 of 1240

Showing per page

An Hadamard maximum principle for the biplacian on hyperbolic manifolds

Håkan Hedenmalm (1999)

Journées équations aux dérivées partielles

We prove the existence of a maximum principle for operators of the type Δ ω - 1 Δ , for weights ω with log ω subharmonic. It is associated with certain simply connected subdomains that are produced by a Hele-Shaw flow emanating from a given point in the domain. For constant weight, these are the circular disks in the domain. The principle is equivalent to the following statement. THEOREM. Suppose ω is logarithmically subharmonic on the unit disk, and that the weight times area measure is a reproducing measure...

An iterative method of alternating type for systems with special block matrices

Milan Práger (1991)

Applications of Mathematics

An iterative procedure for systems with matrices originalting from the domain decomposition technique is proposed. The procedure introduces one iteration parameter. The convergence and optimization of the method with respect to the parameter is investigated. The method is intended not as a preconditioner for the CG method but for the independent use.

An overdetermined elliptic problem in a domain with countably rectifiable boundary

Przemysław Górka (2007)

Colloquium Mathematicae

We examine an elliptic equation in a domain Ω whose boundary ∂Ω is countably (m-1)-rectifiable. We also assume that ∂Ω satisfies a geometrical condition. We are interested in an overdetermined boundary value problem (examined by Serrin [Arch. Ration. Mech. Anal. 43 (1971)] for classical solutions on domains with smooth boundary). We show that existence of a solution of this problem implies that Ω is an m-dimensional Euclidean ball.

Analysis of a non-standard mixed finite element method with applications to superconvergence

Jan Brandts (2009)

Applications of Mathematics

We show that a non-standard mixed finite element method proposed by Barrios and Gatica in 2007, is a higher order perturbation of the least-squares mixed finite element method. Therefore, it is also superconvergent whenever the least-squares mixed finite element method is superconvergent. Superconvergence of the latter was earlier investigated by Brandts, Chen and Yang between 2004 and 2006. Since the new method leads to a non-symmetric system matrix, its application seems however more expensive...

Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes

Jérôme Bonelle, Alexandre Ern (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Compatible schemes localize degrees of freedom according to the physical nature of the underlying fields and operate a clear distinction between topological laws and closure relations. For elliptic problems, the cornerstone in the scheme design is the discrete Hodge operator linking gradients to fluxes by means of a dual mesh, while a structure-preserving discretization is employed for the gradient and divergence operators. The discrete Hodge operator is sparse, symmetric positive definite and is...

Currently displaying 141 – 160 of 1240