Displaying 1081 – 1100 of 1372

Showing per page

Separable solutions of quasilinear Lane–Emden equations

Alessio Porretta, Laurent Véron (2013)

Journal of the European Mathematical Society

For 0 < p - 1 < q and either ϵ = 1 or ϵ = - 1 , we prove the existence of solutions of - Δ p u = ϵ u q in a cone C S , with vertex 0 and opening S , vanishing on C S , of the form u ( x ) = x - β ω ( x / x ) . The problem reduces to a quasilinear elliptic equation on S and the existence proof is based upon degree theory and homotopy methods. We also obtain a nonexistence result in some critical case by making use of an integral type identity.

Simmetria delle soluzioni di equazioni ellittiche semilineari in R N

Alberto Farina (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Nella prima parte di questa Nota si dimostrano dei risultati di simmetria unidimensionale e radiale per le soluzioni di Δ u + f u = 0 in R N . Questi risultati sono legati a due congetture (De Giorgi, 1978 e Gibbons, 1994) riguardanti la classificazione delle soluzioni dell’equazione Δ u + u 1 - u 2 = 0 in R N . Si dimostra, in particolare, la seguente generalizzazione della congettura di Gibbons: se N > 1 e se l’insieme degli zeri di u è limitato nella direzione ν , allora u x = u 0 ν x , ovvero, u è unidimensionale. Nella seconda parte si considerano...

Singularités éliminables pour des équations semi-linéaires

Pierre Baras, Michel Pierre (1984)

Annales de l'institut Fourier

Étant donné L un opérateur différentiel d’ordre m sur un ouvert Ω de R N , K un compact de Ω , γ &gt; 1 et γ ' = γ / ( γ - 1 ) , nous montrons que toute solution de “ L u + u γ = 0 sur Ω K , u 0 ” est solution de “ L u + u γ = 0 sur Ω ” dès que la W m , γ ' -capacité de K est nulle. Cette condition s’avère nécessaire quand L est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que ` ` L u + u | u | γ - 1 = μ , u | Ω = 0 ' ' μ est une mesure de Radon bornée sur Ω , a une solution si et seulement si μ ne charge pas les ensembles de W 2 , γ ' -capacité nulle.

Soluciones con soporte compacto para ciertos problemas semilineales.

Jesús Ildefonso Díaz Díaz (1979)

Collectanea Mathematica

In this paper we prove that some classes of semilinear elliptic problems, formulated in very general terms by using the theory of maximal monotone graphs, admit a finite propagation speed. More concretely we show that if the data of these problems have compact supports, then the same happens to their solutions. These same thechniques will also be applied to some evolution problems. The first results in this direction are due to H. Brézis and to O. Oleinik & A. S. Kalashnikov & C. Yuilin...

Solutions for Toda systems on Riemann surfaces

Jiayu Li, Yuxiang Li (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we study the solutions of Toda systems on Riemann surface in the critical case, proving a sufficient condition for existence.

Currently displaying 1081 – 1100 of 1372