Displaying 381 – 400 of 850

Showing per page

Monotonicity and symmetry of solutions of p -Laplace equations, 1 < p < 2 , via the moving plane method

Lucio Damascelli, Filomena Pacella (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We present some monotonicity and symmetry results for positive solutions of the equation - div D u p - 2 D u = f u satisfying an homogeneous Dirichlet boundary condition in a bounded domain Ω . We assume 1 < p < 2 and f locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if Ω is a ball then the solutions are radially symmetric and strictly radially decreasing.

Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method

Giovany M. Figueiredo, João R. Santos (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem ( P ) u = f ( u ) in 3 , u &gt; 0 in 3 , u H 1 ( 3 ) , ( P ε ) ℒ ε u = f ( u ) in IR 3 , u &gt; 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function, ℒ ε is a nonlocal operator defined by u = M 1 3 | u | 2 + 1 3 3 V ( x ) u 2 - 2 Δ u + V ( x ) u , ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.

Currently displaying 381 – 400 of 850