Displaying 481 – 500 of 850

Showing per page

On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications

Lars Diening, Josef Málek, Mark Steinhauer (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study properties of Lipschitz truncations of Sobolev functions with constant and variable exponent. As non-trivial applications we use the Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in [Frehse et al., SIAM J. Math. Anal34 (2003) 1064–1083]. We also establish new existence results to a class of incompressible electro-rheological fluids.

On monotone and Schwarz alternating methods for nonlinear elliptic PDEs

Shiu-Hong Lui (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method...

On Monotone and Schwarz Alternating Methods for Nonlinear Elliptic PDEs

Shiu-Hong Lui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method...

On positive solutions of quasilinear elliptic systems

Yuanji Cheng (1997)

Czechoslovak Mathematical Journal

In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems - Δ p u = f ( x , u , v ) , in Ω , - Δ p v = g ( x , u , v ) , in Ω , u = v = 0 , on Ω , where - Δ p is the p -Laplace operator, p > 1 and Ω is a C 1 , α -domain in n . We prove an analogue of [7, 16] for the eigenvalue problem with f ( x , u , v ) = λ 1 v p - 1 , g ( x , u , v ) = λ 2 u p - 1 and obtain a non-existence result of positive solutions for the general systems.

On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities

Martin Lanzendörfer, Jan Stebel (2011)

Applications of Mathematics

We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.

On Signorini problem for von Kármán equations. The case of angular domain

Jan Franců (1979)

Aplikace matematiky

The paper deals with the generalized Signorini problem. The used method of pseudomonotone semicoercive operator inequality is introduced in the paper by O. John. The existence result for smooth domains from the paper by O. John is extended to technically significant "angular" domains. The crucial point of the proof is the estimation of the nonlinear term which appears in the operator form of the problem. The substantial technical difficulties connected with non-smoothness of the boundary are overcome...

Currently displaying 481 – 500 of 850