Displaying 541 – 560 of 850

Showing per page

On the Newton-Kantorovich theorem and nonlinear finite element methods

Ioannis K. Argyros (2009)

Applicationes Mathematicae

Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.

On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding

Abdelouahed El Khalil, Mohammed Ouanan (2005)

Applicationes Mathematicae

We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ Δ u = | u | p - 2 u in Ω, ⎨ ⎩ | u | p - 2 u / ν = λ ϱ ( x ) | u | p - 2 u + μ | u | p - 2 u on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.

On the solution of a generalized system of von Kármán equations

Jozef Kačur (1981)

Aplikace matematiky

A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.

Currently displaying 541 – 560 of 850