Displaying 581 – 600 of 850

Showing per page

Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points

Jan Malý (1996)

Commentationes Mathematicae Universitatis Carolinae

Let u be a weak solution of a quasilinear elliptic equation of the growth p with a measure right hand term μ . We estimate u ( z ) at an interior point z of the domain Ω , or an irregular boundary point z Ω , in terms of a norm of u , a nonlinear potential of μ and the Wiener integral of 𝐑 n Ω . This quantifies the result on necessity of the Wiener criterion.

Poisson-Boltzmann equation in ℝ³

A. Krzywicki, T. Nadzieja (1991)

Annales Polonici Mathematici

The electric potential u in a solute of electrolyte satisfies the equation Δu(x) = f(u(x)), x ∈ Ω ⊂ ℝ³, u | Ω = 0 . One studies the existence of a solution of the problem and its properties.

Positive solutions for elliptic problems with critical nonlinearity and combined singularity

Jianqing Chen, Eugénio M. Rocha (2010)

Mathematica Bohemica

Consider a class of elliptic equation of the form - Δ u - λ | x | 2 u = u 2 * - 1 + μ u - q in Ω { 0 } with homogeneous Dirichlet boundary conditions, where 0 Ω N ( N 3 ), 0 < q < 1 , 0 < λ < ( N - 2 ) 2 / 4 and 2 * = 2 N / ( N - 2 ) . We use variational methods to prove that for suitable μ , the problem has at least two positive weak solutions.

Positive solutions for some quasilinear elliptic equations with natural growths

Lucio Boccardo (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is - div 1 + u r u + u m - 2 u u 2 = f in Ω u = 0 su Ω .

Positive solutions for sublinear elliptic equations

Bogdan Przeradzki, Robert Stańczy (2002)

Colloquium Mathematicae

The existence of a positive radial solution for a sublinear elliptic boundary value problem in an exterior domain is proved, by the use of a cone compression fixed point theorem. The existence of a nonradial, positive solution for the corresponding nonradial problem is obtained by the sub- and supersolution method, under an additional monotonicity assumption.

Positive solutions of nonlinear elliptic systems

Robert Dalmasso (1993)

Annales Polonici Mathematici

We study the existence and nonexistence of positive solutions of nonlinear elliptic systems in an annulus with Dirichlet boundary conditions. In particular, L a priori bounds are obtained. We also study a general multiple linear eigenvalue problem on a bounded domain.

Post-buckling range of plates in axial compression with uncertain initial geometric imperfections

Ivan Hlaváček (2002)

Applications of Mathematics

The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.

Currently displaying 581 – 600 of 850