Displaying 361 – 380 of 453

Showing per page

Symmetry of minimizers with a level surface parallel to the boundary

Giulio Ciraolo, Rolando Magnanini, Shigeru Sakaguchi (2015)

Journal of the European Mathematical Society

We consider the functional Ω ( v ) = Ω [ f ( | D v | ) - v ] d x , where Ω is a bounded domain and f is a convex function. Under general assumptions on f , Crasta [Cr1] has shown that if Ω admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball. With some restrictions on f , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...

The Calderón-Zygmund theory for elliptic problems with measure data

Giuseppe Mingione (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider non-linear elliptic equations having a measure in the right-hand side, of the type div a ( x , D u ) = μ , and prove differentiability and integrability results for solutions. New estimates in Marcinkiewicz spaces are also given, and the impact of the measure datum density properties on the regularity of solutions is analyzed in order to build a suitable Calderón-Zygmund theory for the problem. All the regularity results presented in this paper are provided together with explicit local a priori estimates.

The Dirichlet problem for the degenerate Monge-Ampère equation.

Luis A. Caffarelli, Louis Nirenberg, Joel Spruck (1986)

Revista Matemática Iberoamericana

Let Ω be a bounded convex domain in Rn with smooth, strictly convex boundary ∂Ω, i.e. the principal curvatures of ∂Ω are all positive. We study the problem of finding a convex function u in Ω such that:det (uij) = 0 in Ωu = φ given on ∂Ω.

The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems

Pavel Drábek (1995)

Mathematica Bohemica

We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem - div ( a ( x , u ) | | p - 2 u ) = λ b ( x , u ) | u | p - 2 u in Ω , u = 0 on Ω , where Ω is a bounded domain, p > 1 is a real number and a ( x , u ) , b ( x , u ) satisfy appropriate growth conditions. Moreover, the coefficient a ( x , u ) contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in L ( Ω ) . The main tool is the investigation of the associated homogeneous eigenvalue problem and an application...

The Neumann problem for some degenerate elliptic equations

Albo Carlos Cavalheiro (2006)

Applications of Mathematics

In the paper we study the equation L u = f , where L is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set Ω . We prove existence and uniqueness of solutions in the space H ( Ω ) for the Neumann problem.

The restriction theorem for fully nonlinear subequations

F. Reese Harvey, H. Blaine Lawson (2014)

Annales de l’institut Fourier

Let X be a submanifold of a manifold Z . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on Z , restrict to be viscosity subsolutions of the restricted subequation on X ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...

The Wiener test for degenerate elliptic equations

E. B. Fabes, D. S. Jerison, C. E. Kenig (1982)

Annales de l'institut Fourier

We consider degenerated elliptic equations of the form i , j D x i ( a i j ( x ) D x j ) , where λ w ( x ) | ξ | 2 i , j a i j ( x ) ξ i ξ j Λ w ( x ) | ξ | 2 . Under suitable assumptions on w , we obtain a characterization of Wiener type (involving weighted capacities) for the set of regular points for these operators. The set of regular points is shown to depend only on w . The main tool we use is an estimate for the Green function in terms of w .

Currently displaying 361 – 380 of 453