Oblique derivative problems for generalized Rassias equations of mixed type with several characteristic boundaries.
We study the boundary value problem in , on , where is a smooth bounded domain in . Our attention is focused on two cases when , where for any or for any . In the former case we show the existence of infinitely many weak solutions for any . In the latter we prove that if is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a -symmetric version for even functionals...
We study some aspects of the asymptotic behavior of the solutions to a class of nonlinear parabolic equations.
We study stationary solutions of the system , m => 1, Δφ = ±u, defined in a bounded domain Ω of . The physical interpretation of the above system comes from the porous medium theory and semiconductor physics.
We study properties of Lipschitz truncations of Sobolev functions with constant and variable exponent. As non-trivial applications we use the Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in [Frehse et al., SIAM J. Math. Anal34 (2003) 1064–1083]. We also establish new existence results to a class of incompressible electro-rheological fluids.
We study the existence of nonnegative solutions of elliptic equations involving concave and critical Sobolev nonlinearities. Applying various variational principles we obtain the existence of at least two nonnegative solutions.
In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems where is the -Laplace operator, and is a -domain in . We prove an analogue of [7, 16] for the eigenvalue problem with , and obtain a non-existence result of positive solutions for the general systems.
Let Ω be a smooth bounded domain in , n > 1, let a and f be continuous functions on , . We are concerned here with the existence of solution in , positive or not, to the problem: This problem is closely related to the extremal functions for the problem of the best constant of into .