-spectrum of Ornstein-Uhlenbeck operators
Let Ω be an open subset of with 0 ∈ Ω. Furthermore, let be a second-order partial differential operator with domain where the coefficients are real, and the coefficient matrix satisfies bounds 0 < C(x) ≤ c(|x|)I for all x ∈ Ω. If for some λ > 0 where then we establish that is L₁-unique, i.e. it has a unique L₁-extension which generates a continuous semigroup, if and only if it is Markov unique, i.e. it has a unique L₂-extension which generates a submarkovian semigroup. Moreover...
The nonlocal boundary value problems for linear and nonlinear degenerate abstract differential equations of arbitrary order are studied. The equations have the variable coefficients and small parameters in principal part. The separability properties for linear problem, sharp coercive estimates for resolvent, discreetness of spectrum and completeness of root elements of the corresponding differential operator are obtained. Moreover, optimal regularity properties for nonlinear problem is established....
Let be a compact Riemannian manifold. A quasi-harmonic sphere on is a harmonic map from to () with finite energy ([LnW]). Here is the Euclidean metric in . Such maps arise from the blow-up analysis of the heat flow at a singular point. In this paper, we prove some kinds of Liouville theorems for the quasi-harmonic spheres. It is clear that the Liouville theorems imply the existence of the heat flow to the target . We also derive gradient estimates and Liouville theorems for positive...
We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.
We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.
In this note we are going to address the question of when a second order differential operator is controlled by a subelliptic second order differential operator.