On the behaviour of the solutions to p-Laplacian equations as p goes to 1
We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on [0,∞[ and satisfies the divergence condition∫ 1 ∞ P ( t ) t 2 d t = ∞ .
We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on [0,∞[ and satisfies the divergence condition
Let , and let , be given. In this paper we study the dimension of -harmonic measures that arise from non-negative solutions to the -Laplace equation, vanishing on a portion of , in the setting of -Reifenberg flat domains. We prove, for , that there exists small such that if is a -Reifenberg flat domain with , then -harmonic measure is concentrated on a set of -finite -measure. We prove, for , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of -harmonic measure...
Let be a relatively closed subset of a Euclidean domain . We investigate when solutions to certain elliptic equations on are restrictions of solutions on all of . Specifically, we show that if is not too large, and has a suitable decay rate near , then can be so extended.