Inverse scattering for the one-dimensional Stark effect and application to the cylindrical KdV equation
We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to...
In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.
In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.
It is proved that one can choose a control function on an arbitrarilly small open subset of the boundary of an obstacle so that the total radiation from this obstacle for a fixed direction of the incident plane wave and for a fixed wave number will be as small as one wishes. The obstacle is called "invisible" in this case.
Let be a Schrödinger operator on with and satisfying . Assume that is a function such that is an Orlicz function, (the class of uniformly Muckenhoupt weights). Let be an -harmonic function on with , where and are positive constants. In this article, the author proves that the mapping is an isomorphism from the Musielak-Orlicz-Hardy space associated with , , to the Musielak-Orlicz-Hardy space under some assumptions on . As applications, the author further obtains the...
Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field and displacement...
Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field and displacement...
First we recall a Faber-Krahn type inequality and an estimate for in terms of the so-called Cheeger constant. Then we prove that the eigenvalue converges to the Cheeger constant as . The associated eigenfunction converges to the characteristic function of the Cheeger set, i.e. a subset of which minimizes the ratio among all simply connected . As a byproduct we prove that for convex the Cheeger set is also convex.