Displaying 2661 – 2680 of 5493

Showing per page

Nouvelles formulations intégrales pour les problèmes de diffraction d’ondes

David P. Levadoux, Bastiaan L. Michielsen (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all frequencies....

Nouvelles formulations intégrales pour les problèmes de diffraction d'ondes

David P. Levadoux, Bastiaan L. Michielsen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all...

Null controllability of a coupled model in population dynamics

Younes Echarroudi (2023)

Mathematica Bohemica

We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations*

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of the general biharmonic problem by the finite element method

Jiří Hřebíček (1982)

Aplikace matematiky

The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit C 1 -elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform V O h -ellipticity are found.

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace’s equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace's equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Currently displaying 2661 – 2680 of 5493