Displaying 281 – 300 of 5493

Showing per page

A penalty method for topology optimization subject to a pointwise state constraint

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with topology optimization of domains subject to a pointwise constraint on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced and the expression of the corresponding topological derivative is obtained for the Laplace equation in two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some numerical applications.

A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Josef Dalík (1991)

Applications of Mathematics

A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation - ϵ u n + p u ' + q u = f are presented and analyzed theoretically. The positive number ϵ is supposed to be much less than the discretization step and the values of p , q . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

A piecewise P2-nonconforming quadrilateral finite element

Imbunm Kim, Zhongxuan Luo, Zhaoliang Meng, Hyun NAM, Chunjae Park, Dongwoo Sheen (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a piecewise P2-nonconforming quadrilateral finite element. First, we decompose a convex quadrilateral into the union of four triangles divided by its diagonals. Then the finite element space is defined by the set of all piecewise P2-polynomials that are quadratic in each triangle and continuously differentiable on the quadrilateral. The degrees of freedom (DOFs) are defined by the eight values at the two Gauss points on each of the four edges plus the value at the intersection of the...

A population biological model with a singular nonlinearity

Sayyed Hashem Rasouli (2014)

Applications of Mathematics

We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form - div ( | x | - α p | u | p - 2 u ) = | x | - ( α + 1 ) p + β a u p - 1 - f ( u ) - c u γ , x Ω , u = 0 , x Ω , where Ω is a bounded smooth domain of N with 0 Ω , 1 < p < N , 0 α < ( N - p ) / p , γ ( 0 , 1 ) , and a , β , c and λ are positive parameters. Here f : [ 0 , ) is a continuous function. This model arises in the studies of population biology of one species with u representing the concentration of the species. We discuss the existence of a positive solution when f satisfies certain additional conditions. We use the method of sub-supersolutions...

A positive solution for an asymptotically linear elliptic problem on N autonomous at infinity

Louis Jeanjean, Kazunaga Tanaka (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on N . The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be used in order...

A positive solution for an asymptotically linear elliptic problem on N autonomous at infinity

Louis Jeanjean, Kazunaga Tanaka (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on N . The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be used in order...

A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces

Juan Pablo Agnelli, Eduardo M. Garau, Pedro Morin (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clément or Scott–Zhang interpolation...

A Posteriori Error Estimates for Finite Volume Approximations

S. Cochez-Dhondt, S. Nicaise, S. Repin (2009)

Mathematical Modelling of Natural Phenomena

We present new a posteriori error estimates for the finite volume approximations of elliptic problems. They are obtained by applying functional a posteriori error estimates to natural extensions of the approximate solution and its flux computed by the finite volume method. The estimates give guaranteed upper bounds for the errors in terms of the primal (energy) norm, dual norm (for fluxes), and also in terms of the combined primal-dual norms. It is shown that the estimates provide sharp upper and...

A posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings

Mauricio A. Barrientos, Gabriel N. Gatica, Matthias Maischak (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the...

A posteriori error estimates for the 3 D stabilized Mortar finite element method applied to the Laplace equation

Zakaria Belhachmi (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also estimates...

A posteriori Error Estimates For the 3D Stabilized Mortar Finite Element Method applied to the Laplace Equation

Zakaria Belhachmi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also estimates...

A posteriori error estimates with post-processing for nonconforming finite elements

Friedhelm Schieweck (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited...

A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements

Friedhelm Schieweck (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is...

Currently displaying 281 – 300 of 5493