Displaying 361 – 380 of 737

Showing per page

A second-order finite volume element method on quadrilateral meshes for elliptic equations

Min Yang (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in H 1 -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.

A second-order finite volume element method on quadrilateral meshes for elliptic equations

Min Yang (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in H1-norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.

A semi-smooth Newton method for solving elliptic equations with gradient constraints

Roland Griesse, Karl Kunisch (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.

A shape optimization approach for a class of free boundary problems of Bernoulli type

Abdesslam Boulkhemair, Abdeljalil Nachaoui, Abdelkrim Chakib (2013)

Applications of Mathematics

We are interested in an optimal shape design formulation for a class of free boundary problems of Bernoulli type. We show the existence of the optimal solution of this problem by proving continuity of the solution of the state problem with respect to the domain. The main tools in establishing such a continuity are a result concerning uniform continuity of the trace operator with respect to the domain and a recent result on the uniform Poincaré inequality for variable domains.

Currently displaying 361 – 380 of 737